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Abstract

According to the non-stationary characteristics of roller bearing fault vibration signals, a roller bearing fault diagnosis

method based on empirical mode decomposition (EMD) energy entropy is put forward in this paper. Firstly, original

acceleration vibration signals are decomposed into a finite number of stationary intrinsic mode functions (IMFs), then the

concept of EMD energy entropy is proposed. The analysis results from EMD energy entropy of different vibration signals

show that the energy of vibration signal will change in different frequency bands when bearing fault occurs. Therefore, to

identify roller bearing fault patterns, energy feature extracted from a number of IMFs that contained the most dominant

fault information could serve as input vectors of artificial neural network. The analysis results from roller bearing signals

with inner-race and out-race faults show that the diagnosis approach based on neural network by using EMD to extract

the energy of different frequency bands as features can identify roller bearing fault patterns accurately and effectively and

is superior to that based on wavelet packet decomposition and reconstruction.

r 2005 Elsevier Ltd. All rights reserved.
1. Introduction

While the roller bearing with faults is operating, its vibration signals will present non-stationary
characteristics, and how to extract the fault characteristic information from the non-stationary vibration
signals is the crux of the roller bearing fault diagnosis [1,2]. The traditional diagnosis techniques perform this
from the waveforms of the fault vibration signals in the time or frequency domain, and thus construct the
criterion functions to identify the working condition of roller bearings. However, because the nonlinear factors
such as loads, clearance, friction, stiffness and so on have distinct influence on the vibration signals due to the
complexity of the construction and working condition of roller bearings, it is very difficult to make an accurate
evaluation of the working condition of roller bearings through the analysis in time or frequency domain only
[2,3]. Wavelet analysis can provide the local features of the signal in both the time and frequency domain, so, it
has been widely used in the roller bearing fault diagnosis [4,5]. However, the wavelet analysis is essentially an
adjustable windowed Fourier transform. Due to the limitation of the length of the wavelet bases energy
leakage will occur in wavelet transformation. Furthermore, once the wavelet bases and the decomposition
ee front matter r 2005 Elsevier Ltd. All rights reserved.
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scales are determined, the results of wavelet transform would be the signal under a certain scale, whose
frequency components related only to the sample frequency but not to the signal itself. Therefore, wavelet
analysis is not a self-adaptive signal processing method in nature [6,7]. Recently, a new signal analysis method,
namely empirical mode decomposition (EMD, as defined in Section 1) developed by Huang et al., has been
based on the local characteristic time scale of the signal and can decompose the complicated signal into a
number of intrinsic mode functions (IMFs, as defined in Section 1) [8]. By analyzing each resulting IMF
component that involves the local characteristic of the signal, the characteristic information of the original
signal could be extracted more accurately and effectively. In addition, the frequency components involved in
each IMF not only relates to sampling frequency but also changes with the signal itself; therefore, EMD is a
self-adaptive signal processing method that can be applied to nonlinear and non-stationary process perfectly,
and which has overcome the limitation of the Fourier transform and has high SNR as well.

In this paper, EMD is applied to the roller bearing fault diagnosis. First, the original acceleration vibration
signal is decomposed by EMD and some IMF components are obtained, then the concept of EMD energy
entropy is introduced, which can reflect the real work condition and the fault pattern of the roller bearing. The
EMD energy entropies of different vibration signals illustrate that the energy of acceleration vibration signal
in different frequency bands will change when bearing fault occurs. In order to identify the work condition of
roller bearing further, in this paper, artificial neural network (ANN) [9] served as a classifier and the extracted
energy features of the stationary IMFs are taken as network input vectors, and then the fault bearing and the
normal bearing can be distinguished. Meanwhile, to verify the superiority of the EMD method, it is compared
with the wavelet packet analysis method as well. Similarly, the original signal is decomposed by the wavelet
packet, and then the energy features are extracted accordingly from the time series that are obtained after the
wavelet coefficients are reconstructed. These resulting features are also used as input vectors to ANN to
identify work condition of roller bearing. The experimental results show that the diagnosis approach of neural
network based on EMD energy entropy has higher network identification ability.

The paper is organized as follows. Section 1 is dedicated to the EMD method. In Section 2, the concept of
EMD energy entropy is proposed and the EMD energy entropies of different vibration signals are calculated,
which illustrates that the energy of acceleration vibration signal in different frequency bands changes when
bearing fault occurs. In Section 3, the fault diagnosis method based on EMD and ANN is given, in which
energy features extracted from a number of IMFs are used as input vectors of ANN. In Section 4, the fault
diagnosis method is applied to roller bearing diagnosis and is compared with the wavelet packet analysis
method. The conclusion of this paper is given in Section 5.

2. EMD method

The EMD method is developed from the simple assumption that any signal consists of different simple
intrinsic modes of oscillations. Each linear or nonlinear mode will have the same number of extrema and zero-
crossings. There is only one extremum between successive zero-crossings. Each mode should be independent of
the others. In this way, each signal could be decomposed into a number of intrinsic mode functions (IMFs),
each of which must satisfy the following definition [6]:
(1)
 In the whole data set, the number of extrema and the number of zero-crossings must either be equal or
differ at most by one.
(2)
 At any point, the mean value of the envelope defined by local maxima and the envelope defined by the
local minima is zero.
An IMF represents a simple oscillatory mode compared with the simple harmonic function. With the
definition, any signal x(t) can be decomposed as follows [4]:
(1)
 Identify all the local extrema, then connect all the local maxima by a cubic spline line as the upper
envelope.
(2)
 Repeat the procedure for the local minima to produce the lower envelope. The upper and lower envelopes
should cover all the data between them.



ARTICLE IN PRESS
Y. Yu et al. / Journal of Sound and Vibration 294 (2006) 269–277 271
(3)
 The mean of upper and low envelope value is designated as m1, and the difference between the signal x(t)
and m1 is the first component, h1, i.e.

xðtÞ �m1 ¼ h1. (1)

Ideally, if h1 is an IMF, then h1 is the first component of x(t).

(4)
 If h1 is not an IMF, h1 is treated as the original signal and (1)–(3) are repeated; then

h1 �m11 ¼ h11. (2)

After repeated sifting, i.e. up to k times, h1k becomes an IMF, that is

h1ðk�1Þ �m1k ¼ h1k; (3)

then, it is designated as

c1 ¼ h1k, (4)

the first IMF component from the original data. c1 should contain the finest scale or the shortest period
component of the signal.
(5)
 Separating c1 from x(t), we get

r1 ¼ xðtÞ � c1, (5)

r1 is treated as the original data, and by repeating the above processes, the second IMF component c2 of
x(t) could be obtained. Let us repeat the process as described above for n times, then n-IMFs of signal x(t)
could be obtained. Then,

r1 � c2 ¼ r2

..

.

rn�1 � cn ¼ rn

9>>=
>>;. (6)
The decomposition process can be stopped when rn becomes a monotonic function from which no more
IMF can be extracted. By summing up Eqs. (5) and (6), we finally obtain

xðtÞ ¼
Xn

j¼1

cj þ rn. (7)

Thus, one can achieve a decomposition of the signal into n-empirical modes, and a residue rn, which is the
mean trend of x(t). The IMFs c1; c2; . . . ; cn include different frequency bands ranging from high to low. The
frequency components contained in each frequency band are different and they change with the variation of
signal x(t), while rn represents the central tendency of signal x(t).

Fig. 1 shows the vibration acceleration signal of the roller bearing with out-race fault. The decomposed
results are given in Fig. 2, which has 22 IMFs in common but only nine of them are shown in the figure
because of limited space. It can be seen from the figures that the signal is decomposed into some IMFs with
different time scales by which the characteristics of the signal can be presented in different resolution ratio.

3. EMD energy entropy

While the roller bearing with different faults is operating, the corresponding resonance frequency
components are produced in the vibration signals, and here the energy of fault vibration signal changes with
the frequency distribution. To illustrate this change case as mentioned above, the EMD energy entropy is
proposed in this paper.

If n IMFs and a residue rn are obtained by using the EMD method to decompose the roller bearing
vibration signal x(t) where the energy of the n IMFs is E1;E2; . . . ;En, respectively; then, due to the
orthogonality of the EMD decomposition, the sum of the energy of the n IMFs should be equal to the total
energy of the original signal when the residue rn is ignored. As the IMFs c1ðtÞ; c2ðtÞ; . . . ; cnðtÞ include different
frequency components, E ¼ E1;E2; . . . ;Enf g, forms an energy distribution in the frequency domain of roller
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Fig. 2. The EMD decomposed results of vibration signal of the roller bearing with out-race fault.

Fig. 1. The vibration acceleration signal of the roller bearing with out-race fault.
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bearing vibration signal, and then the corresponding EMD energy entropy is designated as

HEN ¼ �
Xn

i¼1

pi log pi, (8)

where pi ¼ Ei=E is the percent of the energy of ci(t) in the whole signal energy (E ¼
Pn

i¼1Ei).
Figs. 3, 4 and 5 show, respectively, the vibration acceleration signals of the roller bearing that is normal,

with out-race fault, and with inner-race fault. If these acceleration signals are decomposed by the EMD
method, the EMD energy entropies shown as Table 1 would be obtained. It can be concluded from the table
that the energy entropy of the vibration signals of normal roller bearing is bigger than that of the other
because the energy distribution of this kind of signals in each frequency band is comparatively even and
uncertain. When the out-race fault occurs in the roller bearing, the corresponding resonance frequency
components are produced, therefore, the energy entropy would reduce because the energy distributes mainly in
the resonance frequency band and the distribution uncertainty is relatively less. Moreover, if the inner-race
fault occurs in the roller bearing, the higher resonance frequency components are produced and the impact is
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Fig. 3. The vibration acceleration signal of the normal roller bearing.

Fig. 4. The vibration acceleration signal of the roller bearing with out-race fault.

Fig. 5. The vibration acceleration signal of the roller bearing with inner-race fault.

Table 1

The EMD energy entropies of the vibration signals of the roller bearing with different fault

Normal Out-race fault Inner-race fault

1.9499 1.5217 1.1492

Y. Yu et al. / Journal of Sound and Vibration 294 (2006) 269–277 273
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more severe, so the energy would focus on the resonance frequency band all the more and the energy entropy
would be the least.

It can be seen from the above analysis that the energy entropy based on EMD can basically reflect the work
condition and the fault pattern of the roller bearing. But it is not enough if we distinguish the work condition
and the fault pattern only according to the EMD energy entropy; further analysis is desirable.
4. Roller bearing fault diagnosis method based on EMD and ANN

It can be seen from the above analysis that the EMD energy entropies of the vibration signal of the roller
bearings with different work conditions and fault patterns are obviously different, which shows that the energy
of each IMF changed when roller bearing went wrong. In this paper, it is adopted that taking the energy
feature of each IMF component as the ANN input vector, the work condition and fault patterns of the roller
bearing can be identified effectively. The flow chart of the roller bearing fault diagnosis method based on
EMD and ANN is shown in Fig. 6.

The fault diagnosis method is given as the following:
(1)
 Some signals are collected as samples under the three circumstances that the roller bearing is normal, that
the roller bearing has out-race faults, and that the roller bearing has inner-race faults.
(2)
 The original vibration signals are decomposed into some IMFs and the first m IMFs which include the
most dominant fault information are chosen to extract the feature.
(3)
 Calculate the total energy Ei of the first m IMFs;

Ei ¼

Z þ1
�1

jciðtÞj
2dt ði ¼ 1; 2; . . . ;mÞ. (9)
(4)
 Construct a feature vector T with the energy as element,

T ¼ ½E1;E2; . . . ;Em�. (10)

Considering that the energy is sometimes biggest, T is adjusted by normalizing the feature for the
convenience of the following analysis and processing.
Let

E ¼
Xm

i¼1

jEij
2

 !1=2

. (11)

Then

T 0 ¼ ½E1=E;E2=E; . . . ;Em=E�. (12)

And the vector T 0 is a normalized vector.

(5)
 The procedure of training an ANN is carried out by utilizing the most commonly used algorithm known as

back-propagation (BP). The number of nodes in the input layer is determined by the number of feature
vector (T 0). By trial and error method, the number of nodes in the hidden layer can be established. The
output of nodes is decided by the number of the fault patterns as given below: pattern 1—normal bearing
[1 0 0]; pattern 2—bearing with out-race fault [0 1 0]; pattern 3—bearing with inner-race fault [0 0 1]. After
Input original
signal x(t)

IMF components
are obtained after
applying EMD to

x (t)

Compute the
energy of the IMF

components 

Train the
ANN 

Identify the
condition and
fault pattern
of the roller

bearing  

Fig. 6. The flow chart of the roller bearing fault diagnosis method based on EMD and ANN.
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the ANN is successfully trained, it would be ready to test samples to identify the different work conditions
and fault patterns.
5. Application

The test rig is shown in Fig. 7, which consists of a motor, a coupling, a rotor and a shaft with two 6311-type
roller bearings. The test rig was used for modeling different fault types such as imbalance, misalignment and
different types of bearing faults. The shaft’s rotating frequency is 25Hz and the rotor’s moment of inertia is
0.03 kgm2; after the impulse excitation experiment to the roller bearing, the first three resonance frequencies of
the roller bearing are determined as 420, 732, and 1016Hz, respectively, so the sample frequency can be taken
as 4096Hz; the vibration signal is collected by the acceleration sensor fixed on the bearing housing when the
shaft’s rotating frequency is steady. As the roller bearing usually works at a constant speed, the start-up and
stop process are not under consideration. By laser cutting in the inner-race or out-race of the bearing the fault
is introduced, and the slot width and depth is 0.15 and 0.13mm, respectively. Due to the restriction of the
experimental condition, it is not possible to introduce fault in the rollers. Roller bearings in three conditions
(normal bearing, bearing with inner-race fault and bearing with out-race fault) are tested and 15 vibration
signals of roller bearings in each condition are obtained in which 10 groups are drawn out at random as the
sample data and the rest are taken as test data.

First, after the original vibration signals are decomposed into some IMFs by EMD, the first eight IMFs that
include the most dominant fault information are chosen and arranged from high to low according to the
frequency components as c1ðtÞ; c2ðtÞ; . . . ; c8ðtÞ); then, the fault feature vector T0 are obtained according to (6),
(7) and (8); finally, ANN is adopted to identify the various patterns. The ANN has three layers in which the
fault feature vector T0 in the three patterns respectively are taken as the ANN inputs; the hidden layer includes
18 nodes and the output are the three patterns accordingly, i.e., normal, out-race fault and inner-race fault. So
the final network structure consisted of two layers: input layer, 8 nodes; hidden layer, 18 nodes; output layer,
three nodes. Each pattern is trained by 10 samples and the cut-off error is 0.0001; the learning speed of the
ANN training algorithm is 0.12 and the network is kept being trained till convergence. By applying ANN that
has been trained to the test samples, all the test samples are identified successfully. Due to limited space, only
the identification results of three test samples (corresponding to the three patterns) based on EMD
preprocessing are shown in Table 2.

By applying three layers wavelet packet decomposition to the original signal with Daubechies 10(D10)
wavelet base, the wavelet packet decomposition coefficients of eight frequency bands of the third layer are
obtained, which are reconstructed to form a new time series. Also, they are arranged from high to low
according to the frequency components as c1ðtÞ; c2ðtÞ; . . . ; c8ðtÞ, and then the energy of the eight reconstructed
series is extracted according to Eqs. (6)–(8), which would be taken as the feature vector to train the ANN and
the training process is as above. Apply the trained ANN to identify the test samples and the overall average
classification rate (93%) is achieved. Due to limited space, only the identification results of three test samples
(corresponding to the three patterns) based on wavelet packet preprocessing are shown in Table 2.

Although both the methods based on EMD or wavelet packet analysis as preprocessor to extract the energy
in each frequency band as network input vector are accessible to identify the fault bearings, it can be seen from
Table 2 that the network method based on EMD is superior to that based on wavelet packet analysis in
Worktable

Driver motor

Coupling
Bearing Rotor

Shaft

Fig. 7. Test rig.



ARTICLE IN PRESS

Table 2

Roller bearing fault diagnosis results based on EMD or wavelet packet analysis

Signal Preprocessor E1 E2 E3 E4 E5 E6 E7 E8 ANN output

Normal EMD 0.9133 0.3282 0.1730 0.1207 0.0917 0.0557 0.0360 0.0355 (0.9624,0.0412,0.0393)

Wavelet 0.4538 0.6747 0.2059 0.2090 0.1594 0.3350 0.2302 0.2491 (0.8854,0.0291,0.2713)

Out-race fault EMD 0.9383 0.3399 0.0568 0.0269 0.0089 0.0048 0.0029 0.0023 (0.0894,0.9405,0.0010)

Wavelet 0.3783 0.2730 0.7733 0.4253 0.0159 0.0560 0.0066 0.0075 (0.0663,0.7591,0.4267)

Inner-race fault EMD 0.9536 0.2485 0.1499 0.0714 0.0265 0.0203 0.0090 0.0012 (0.0038,0.0043,0.9376)

Wavelet 0.3565 0.5836 0.4500 0.2199 0.2748 0.4416 0.0644 0.0690 (0.0784,0.3987,0.7589)
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network identification ability, which is due to that the wavelet packet decomposition is not self-adaptive, that
is, the frequency components after decomposition would not change with the vibration signal. Although the
EMD decomposition is a self-adaptive one according to the signal itself, its decomposition process relies on
the change information of signal and thus is more sensitive to the faults.
6. Conclusion

According to the non-stationary characteristics of roller bearing faulty signals, a fault diagnosis method
based on EMD and ANN is put forward in this paper. First, EMD was utilized to preprocess different types of
vibration signals. Then ANN was used on the preprocessed data in order to determine the work condition of
roller bearing. When the work condition of roller bearing changes, the EMD energy entropy varies as well,
which indicates that the energy of each frequency component changes when the roller bearing with a different
fault is operating. Therefore, the energy of each IMF component is adopted as the ANN input features to
identify the work condition of the roller bearing. From the theory analysis and experiment results, it can be
concluded that
(1)
 EMD is a self-adaptive signal processing method that can be applied to nonlinear and non-stationary
processes perfectly.
(2)
 The combination of EMD with ANN successfully identified the work condition and fault patterns of roller
bearing and provided a useful tool for intelligent diagnosis of faults in roller bearing.
(3)
 The ANN method that took the energy of each frequency component based on EMD as the input features
has higher identification ability than that based on wavelet packet analysis.
The algorithm proposed in this paper is based on the EMD method and ANN. ANN is a mature pattern
reorganization method and poses mature algorithm. However, although EMD method has been used in the
analysis of the non-stationary signals such as wave data, earthquake signals and structure, bridge state-
monitoring signal, as a new signal process method, its application has many problems such as that the end
effect need to be solved. Presently, there has been some efficient ways to restraint the end effect [10]. It is sure
that after the problems in the application of EMD method are solved, the method proposed in this paper will
be applied to the fault diagnosis for roller bearing more efficiently.
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